Auditory cortical responses elicited in awake primates by random spectrum stimuli.

نویسندگان

  • Dennis L Barbour
  • Xiaoqin Wang
چکیده

Contrary to findings in subcortical auditory nuclei, auditory cortex neurons have traditionally been described as spiking only at the onsets of simple sounds such as pure tones or bandpass noise and to acoustic transients in complex sounds. Furthermore, primary auditory cortex (A1) has traditionally been described as mostly tone responsive and the lateral belt area of primates as mostly noise responsive. The present study was designed to unify the study of these two cortical areas using random spectrum stimuli (RSS), a new class of parametric, wideband, stationary acoustic stimuli. We found that 60% of all neurons encountered in A1 and the lateral belt of awake marmoset monkeys (Callithrix jacchus) showed significant changes in firing rates in response to RSS. Of these, 89% showed sustained spiking in response to one or more individual RSS, a substantially greater percentage than would be expected from traditional studies, indicating that RSS are well suited for studying these two cortical areas. When firing rates elicited by RSS were used to construct linear estimates of frequency tuning for these sustained responders, the shape of the estimate function remained relatively constant throughout the stimulus interval and across the stimulus properties of mean sound level, spectral density, and spectral contrast. This finding indicates that frequency tuning computed from RSS reflects a robust estimate of the actual tuning of a neuron. Use of this estimate to predict rate responses to other RSS, however, yielded poor results, implying that auditory cortex neurons integrate information across frequency nonlinearly. No systematic difference in prediction quality between A1 and the lateral belt could be detected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural representations of temporally asymmetric stimuli in the auditory cortex of awake primates.

The representation of rapid acoustic transients by the auditory cortex is a fundamental issue that is still unresolved. Auditory cortical neurons have been shown to be limited in their stimulus-synchronized responses, yet the perceptual performances of humans and animals in discriminating temporal variations in complex sounds are better than what existing neurophysiological data would predict. ...

متن کامل

Neural representations of sinusoidal amplitude and frequency modulations in the primary auditory cortex of awake primates.

We investigated neural coding of sinusoidally modulated tones (sAM and sFM) in the primary auditory cortex (A1) of awake marmoset monkeys, demonstrating that there are systematic cortical representations of embedded temporal features that are based on both average discharge rate and stimulus-synchronized discharge patterns. The rate-representation appears to be coded alongside the stimulus-sync...

متن کامل

Correlation of neural response properties with 1 auditory thalamus subdivisions in the awake marmoset 2 3 4 5

28 As the information bottleneck of nearly all auditory input that reaches the cortex, the 29 auditory thalamus serves as the basis for establishing auditory cortical processing streams. The 30 functional organization of the primary and non-primary subdivisions of the auditory thalamus is 31 not well characterized, particularly in awake primates. We have recorded from neurons in the 32 auditory...

متن کامل

Correlation of neural response properties with auditory thalamus subdivisions in the awake marmoset.

As the information bottleneck of nearly all auditory input that reaches the cortex, the auditory thalamus serves as the basis for establishing auditory cortical processing streams. The functional organization of the primary and nonprimary subdivisions of the auditory thalamus is not well characterized, particularly in awake primates. We have recorded from neurons in the auditory thalamus of awa...

متن کامل

Modulation-frequency-specific adaptation in awake auditory cortex.

Amplitude modulations are fundamental features of natural signals, including human speech and nonhuman primate vocalizations. Because natural signals frequently occur in the context of other competing signals, we used a forward-masking paradigm to investigate how the modulation context of a prior signal affects cortical responses to subsequent modulated sounds. Psychophysical "modulation maskin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 18  شماره 

صفحات  -

تاریخ انتشار 2003